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Abstract. The paper deals with the modifications in photocount distributions due to 
dead-time following every registered count. In order to study the effects due to dead-time, 
the distribution of the interval between successive photocounts is studied. For the case of a 
constant dead-time, the mean count rate is derived using the dead-time neglected two-fold 
counting generating function. The result is also generalised to cover the case when the 
dead-time has a distribution with the different dead-times independently and identically 
distributed. In view of the complexity of the problem, a lower bound is obtained for the 
mean square number of photocounts in an arbitrary interval. 

1. Introduction 

The analysis of photocount distribution has, in recent years, gained practical 
importance mainly due to the recognition of the situation that the correlational 
properties of photon beams can be brought out by the characteristics of the photoelec- 
tric counts. Several surveys are now available (Mandel 1963, Mandel and Wolf 1965, 
Pike 1969, Mehta 1970, Cummins and Pike 1974, Chiu 1974, Troup and Turner 1974) 
that describe the state of the art in the subject. The usual method of arriving at the 
photocount distribution, due to Mandel (1963), consists in observing that the photo- 
counts are governed by a Poisson distribution with parameter a E ( T )  where a is the 
photo efficiency of the detector and 

r+T 

E ( T )  = I I ( t ’ )  dt’ (1.1) 
I 

where T is large compared to the coherence time of the incident beam and I ( t )  is the 
intensity of the incident beam. The photocount distribution is arrived at by making an 
ensemble average of the Poisson distribution over E. This method has been improvised 
and extended over the years to cover the most general case when the time interval T is 
arbitrary. Jakeman and Pike (1969) provided an extensive table containing informa- 
tion regarding the state of knowledge of photocount statistics of Gaussian light up to 
1969. The state of the art was further improved by Srinivasan and Sukavanam (1971, 
1972) who provided a method of arriving at explicit formulae for the photocount 
distribution when the spectral profile is meromorphic in character. A further 
improvement to cover analytic profiles was carried out by Srinivasan (1974a) (see also 
Srinivasan and Sukavanam 1977). Meanwhile there were parallel attempts to charac- 
terise the light beam characteristics by h’gher-order photocount statistics. Dialetis 
(1969), Cantrell (1971) and Srinivasan et a1 (1973) have derived explicit formulae for 
many-time photocount distributions for beams with fairly general spectral profiles. 
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While these developments bring the study of pnoton counting statistics to a fairly good 
degree of saturation, there is a small gap due to the modification of the photocount 
statistics arising from the presence of dead-time effects. The inclusion of dead-time 
effects in its full generality is fraught with difficulties almost intractable in nature. 
Consequently resort is generally made to approximate formulae for the distribution of 
the number of photoelectrons detected in any interval of time. The first results in this 
direction were obtained by de Lotto et a1 (1964) who gave corrections to the Poisson 
emission probability of photoelectrons due to an integrated intensity E falling on the 
photocathode of a detector when the dead-time a is small compared to the time interval 
in question. This was further improved by BCdard (1967) who found an explicit 
expression for the probability mass function of the number of counts in ( ~ 0 ,  T )  where T 
is small compared to the coherence time. A method of improving the result was 
indicated in a short communication (Srinivasan 1975) for a detector with a deterministic 
resolving time. In this paper i t  is proposed to provide full details of the derivation of the 
formulae and extend the results to the case when the dead-time has a distribution. 

2. Interval distribution of the successive counts for fixed dead-time 

We first note that the photocounts constitute a stationary stochastic point process (see 
Srinivasan 1974b, Macchi 1975) on the time axis by virtue of the optical field being a 
stationary Gaussian random process. If V ( t )  is the analytic signal, then corresponding 
to a specified sample function Vs(t) ,  p ( n ,  T )  the probability that the number of 
photocounts is n in an arbitrary interval (to. to+ T )  is given by (see Mandel 1963) 

p ( n ,  T I =  ( a  J rn+Tl , ( t )d t )" [ex~(-a  (0 J r ' ~ + T ~ ~ ( t ~ ~ r ) ] ( ~ ! ~ - l  ro (2.1) 

where 

U t )  = V$(t>VS(t) .  ( 2 . 2 )  

Since VS(t)  is only a sample function of the optical field V(t ) ,  an ensemble average 
over the right-hand side of (2.1) leads to the final distribution of the number of counts. 
Such a counting process is known as a doubly stochastic Poisson process or conditioned 
Poisson process. If at this stage we introduce a dead-time a where a is a fully 
determinate quantity, no such simple formula like (2.1) for its ensemble average is 
feasible for the most general case when no restriction is placed on the time interval T. If 
however T is small compared to the coherence time, then the variation of the optical 
field V ( t )  is not great during the interval under consideration and the normal tools of 
stochastic processes can be used to modify (2.1) appropriately (see BCdard 1967 for 
details). To deal with the general case, we confine our attention to the stationary 
distribution of the time intervals between two successive counts. In other words we are 
interested in the function f o ( x )  where 

f o ( x ) =  lim Pr{N,(to+x + A ) - N , ( t , + x )  
A,A'-O 

= 1 > N o  ( t o  + x - Na ( t o ) I N a  ( t o )  > No ( t o  - A')}/A (2.3) 
where N, (. ) is the counting process corresponding to the photoelectrons registered by 
the photodetector. The numerator of the right-hand side of (2.3) denotes the pro- 
bability that there is no photocount in ( t o ,  t o f x )  and one photocount in ( t o + x ,  t o + x  + 
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A) conditional upon there being a photocount in the infinitesimal interval (tu - A', t o )  
preceding to. This probability when divided by A tends to a limit as A and A' tend to 
zero, the limit being independent of to by virtue of the stationariness of the process 
{ V(t)}. Thus the right-hand side of (2.3) is the stationary probability density function 
(PDF) of the interval between two successive photocounts. 

To evaluate the conditional probability on the right-hand side of (2.3) we note that 
the detector is 'free' to detect the photon incident on it provided the dead-time is not in 
operation. Let @ ( t )  be the probability that the detector is free at any arbitrary time t. 
Then the probability that the detector gives rise to a photocountf is P ( t ) ( Z ( t ) ) .  Using 
the stationary nature of the field we find this to be P(Z) where p i s  the stationary value of 
@ ( t ) .  Thus we are led to the conclusion that the average rate of photons that are 
detected is @ ( I ) .  We now demonstrate how ,B can be determined. From the theory of 
stationary point processes (see McFadden 1962, Srinivasan 1974b) we have 

Thus iff<,  ) is determined, some light can be shed on the photon counting statistics. To 
detzrmine f a ( .  ) we use the stationarb and doubly stochastic Poisson character of the 
counting process Na( . ) .  If 15(.) is a sample function of the intensity, the counting 
process is a n  inhomogeneous Poisson process in the absence of dead-time. However, i f  
dead-times are taken into account, the probability density of the counts is zero in an 
interval of length a immediately following a count, the other characteristics of the 
distribution remaining the same. 'Thus for a given sample function Zs(.), the joint 
probability density of the first count (measured from to) at the point to+x(x > a )  and a 
count in an infinitesimal interval A preceding the point to is given by 

ApZs(to)[ exp(-/'(l+* Zs(u)du)]Zs(to+x) x > a .  
kl+a 

If an ensemble average is taken over all paths Z5(.) the above expression reduces to 

To obtain f a ( . ) ,  we note that f a ( . )  is the stationary conditioned probability density of 
the time to the first photocount measured from to conditioned upon a photocount in an 
infinitesimal interval preceding to. Thus if the constraint of stationariness is imposed 
and the above expression is divided by the stationary probability that a photocount is 
recorded in the infinitesimal interval (to - A, to), we obtain 

x < a  

We note that in the right-hand side of ( 2 . 5 )  /3 being a positive definite constant gets 
cancelled and f u  (.  ) is expressed purely in terms of the random function Z ( t )  or V(t). In 
other words the statistical characteristics of the counting process N u ( . )  (censored 
process) are expressed in terms of the counting process N ( . )  corresponding to no 
dead-time (uncensored process). This is the advantage of the formula (2.5). 

+ From now on we set a = 1 
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To obtain an expression for fa(.), we note it is more convenient to deal with F a ( * )  
where 

for Fa(x) is the stationary probability that no photocount is recorded by the detector up 
to the time point to + x given that a photocount is recorded in an arbitarily small time 
interval preceding to. From (2.5) and (2.6) we find that the function Fa(.) is given by 

The right-hand side of (2.7) can be computed easily if we are in possession of the double 
generating function G2(s1, t l ,  Ti; s2, t 2 ,  T,) of the photocounts defined by 

It is easy to note that 

r2=ro+a.T2=to+x 
s 1 = o . s 2 = i . ~ 1 = r 0 . ~ l = ~ + a .  

An explicit expression for G 2  is available in the literature for some specific spectral 
profiles (see Jakeman 1970, Srinivasan er a1 1973). If we confine ourselves to a 
Lorentzian profile of half-width r, G2 is given by (Srinivasan er a1 1973) 

(2.10) 

A = g1V1 - fl)g2(T2 - t2)[exp(-r(T1 - r l  + T ,  - t,))] - 

xsinh[pl(Tl - t i ) ]  sinh[p2(Tz-r2)] exp(-r(r2-rl+ T2- TI)) (2.11) 

g i ( t )  = cosh(Pit)+ ; [ (TIPi )+ (Pi/r)l (2.12) 

pi = (r2 + 2 r z ~ $ / ~ .  (2.13) 

Performing the differentiation as indicated in (2.9), we finally obtain 

(2.14) 

where A(x) is the value of A (as given by (2.11)) evaluated at s1 = 0, sz = -1, t l  = to, 
T I  = t + U  = f2 ,  T2 = r o + x  and is given by 

A(x)={cosh[p(x -a)]+$[(p/T)+(T/p)] sinh[p(x -a)]}e-""-"' (2.15) 

p = (r2 + 21Y)l/~. (2.16) 

We note that 

Fa(x) = 1 for x < U .  (2.17) 



Dead-time effects in photon counting statistics 2337 

Using (2.14), we obtain after integration? 

(2.18) 

(2.19) 

A consistency check can be provided by setting a = 0. In that case p must be equal 
to unity. The verification is best done at the level of the distribution function F,(x) as 
given by (2.14). Integrating the right-hand side of (2.10) with respect to x over the 
range 0 to CO, we obtain 

lox F ~ ( X )  dx = i / T  (2.20) 

so that p equals to unity.  Incidentally from (2.18) we obtain the result 

Using (2.16) we obtain 

X (n + 1)cn(l -e-2ra) -' 
) .  p = (1  + aT+ b2T2 1 

. = 0 [ ( 2 n + l ) p - r ] [ ( 2 n + 3 ) p - r ]  

(2.21) 

(2.22) 

Next we consider the general case when the dead-time is governed by a probability 
density function q ( * ) .  We will assume that the different times are independently and 
identically distributed with the common probability density function q (  .). In that case 
the survivor function F,(x) given by (2.14) holds good and can be interpreted as follows: 

F,(x) = Pr{the stationary time interval between two successive counts exceeds X I  the 
dead-time = a }  (2.23) 

Thus F ( x )  the probability that the interval exceeds x is given by 

(2.24) 

On the other hand the expected value of the time interval between two counts is given 
by 

X 

l /pf = 1 F ( x )  dx 
0 

X fb(n + 1) 
= d + b  C n  (1- 

n = O  ( 2 n  + i)p - r (2n + 3)p - r (2.25) 

where 4*(2r) is the Laplace Transform of q ( . )  evaluated at 2r. Using (2.21) we find 

(2.26) 

The above result giving the stationary value of p is perhaps the best result that is 
possible. The information that can be obtained from (2.24) is very limited indeed. 

t The expression given in Srinivasan (1975) is incorrect and it should be replaced by (2.18). 
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Second-order interval characteristics may be obtained by the procedure outlined 
above; however the computation is tedious since we have to deal \vith G4, the four-fold 
generating function of the counts. Although the general method of obtaining G is 
straightforward (see Srinivasan et a1 1973)  the computation of the appropriate deriva- 
tive is a fairly messy job. We wi!l not pursue this since even this will throw light only on 
the stationary correlation between the successive intervals. 

3. A lower bound for the mean square number 

As mentioned i n  an earlier cornmunication (Srinivasan 1975) the most valuable 
information on the statistics is given by h (.  ) the stationary conditioned product density 
of degree one of detected photons. Since there appears to be no possibility of obtaining 
an explicit expression for h ( * )  in the near future, it may be worthwhile to obtain a lower 
bound for the mean square number of detected photons in any arbitrary interval. 

The lower bound is naturally provided by the counting process obtained by 
censoring the process (see Ramakrishnan and Mathews 1953. Smith 1958) through a 
type-I1 counter. In this arrangement each event (photon) whether registered or not 
gives rise to ;1 dead-time a which we shall assume to be fixed. I n  theory a counter of this 
type can be indefinitely locked in the sense that no photon can be detected. Obvious11 
the average number of photocounts recorded by the detector is smaller than PT. The 
same statement can be made for the mean square number of photocounts and hence this 
provides a lower bound. Defining h f  ( a )  the stationary conditioned product density of 
degree one of the censored process by 

h ;  ( x )  = A.A'-*O lim Pr{N: ( t o  + x  + h ) - N ' , ( t , + x )  = l~N',(to)-NC, (&,-A') = l}/h (3.1) 

where N', ( +  ) is the counting process obtained by censoring the photocounts process 
through a type-I1 counter, we obtain 

(3.2) 

1.0, O < x < a  

where Pc is the stationary value of Pc( t )  the probability that the counter is open at t. 
Equation (3.2) is obtained by using arguments similar to those used for the derivation of 
(2.5) with the only difference being that the photocount at t o + x  is not necessarily the 
first one counted from to. Moreover the counter is of type I1 and as such attention need 
be devoted only to the interval of length a preceding t o + x .  The rest of the arguments 
run on parallel lines. Next we notice that hf ( *  )is related to G2(~1, f l ,  T I ;  s2, t 2 ,  T z )  (see 
(2.8)) by 

1 a3G 
I aT2 at, as, 

h i @ ) = - =  (3.3) 

at the point s1  =0 ,  s 2 =  1, ? I =  to ,  t 2  = t o+x  -a ,  TI  = t o f a ,  T2 = t o + x  if x > 2 a .  On the 
other hand if a < x < 2a,  the derivative is evaluated at the point s 1  = 0 ,  s z  = 1 ,  t l  = to,  
t 2  = T1 = t o+u ,  T2 = t o + x .  It can be proved that /I(.), the corresponding product 
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density of the detected photoelectrons will Dc greater in magnitude than h;  (. ) point 
wise. Thus h ;  (.) provides a lower bound for the corresponding product density h ( . ) .  
Using the formula for moments (Srinivasan 1974b, chap. 4), we have:’ 

( ( ~ z ( t ~ ) +  T I - N ;  ( T ) ) ? )  -= ( N :  (to + T I -  ,V:(T))+Z/I; (a) Jo ( ~ - x ) h ?  (x)  dx. (3.4) 

W e  can obtain an improved approximation to the bound by replacing the first term by 
the expected value of the detected photoelectrons. A further improvement is obtained 
by noting h ;  (a) is the rate of counts and can be replaced by the actual rate which is 81 
Thus we have 

T 

Thus the evaluation of the bound reduces to that of finding an expression for AT(.). 
Using (3.3) and (2.10) through (2.12) we obtain after a lengthy but straightforward 
computation 

sinh[p(x-a)]] ,  a < x < 2 a  
(3.6) 

x > 2 a  

where 

L ( a ) =  re-‘”(4 e-r“ sinh(pa)[p s inh (pa )+( r+T)cosh (pa ) ]  

+ A(2a)[  p cosh(pa) + sinh(pa)]}(A(2a)]-’ (3.7) 

(3.8) /z; (CO) = 7 e-r”[cosh(pa)--(r/p) sinh(pa)](A(2u)]-’ 

and A (  9 ) is still given by (2.15). 
No further attempt will be made to compute the integral on the right-hand side of 

(3.5) since it is straightforward. A still further refinement to the bound is achieved by 
replacing h;  ( a ) o n  the right-hand side of (3.6) by PT. Finally we note that it is a difficult 
task to extend formula (3.6) to cover the case when a has a distribution. We  must be 
content with the weak result relating to  the rate of counts provided in 3 2. The  problem 
will perhaps remain open for quite some time. 
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